

Abrechnungsbrennwerte H_{s,eff}

der Stadtwerke Rosenheim Netze GmbH und der INNergie GmbH Zeitraum: Januar 2018 bis Dezember 2018

Da die chemische Zusammensetzung von Erdgasen unterschiedlich ist (z. B. abhängig von der Herkunft), unterliegen die Brennwerte laufend Schwankungen. Für die Bestimmung der abzurechnenden thermischen Energie wird aus den gemessenen Brennwerten einer Abrechnungszeitspanne der Mittelwert gebildet (Abrechnungsbrennwert H_{s.eff}).

Abrechnungsbrennwerte H_{s eff} in kWh/Nm³ je Versorgungsgebiet:

	Stadtwerke Rosen-	INNergie GmbH	INNergie GmbH	INNergie GmbH
	heim Netze GmbH	West	Ost	Schechen
Versorgungsgebiet	Rosenheim	Brannenburg, Flintsbach, Kolbermoor, Oberaudorf, Raubling	Rohrdorf Stephanskirchen	Schechen
Jan 2018	11,280	11,279	11,282	11,280
Feb 2018	11,271	11,269	11,277	11,271
Mrz 2018	11,251	11,250	11,258	11,251
Apr 2018	11,246	11,245	11,252	11,246
Mai 2018	11,245	11,245	11,244	11,245
Jun 2018	11,255	11,255	11,254	11,255
Jul 2018	11,275	11,275	11,280	11,275
Aug 2018	11,279	11,279	11,262	11,279
Sep 2018	11,265	11,265	11,264	11,265
Okt 2018	11,270	11,268	11,279	11,270
Nov 2018	11,270	11,259	11,305	11,270
Dez 2018	11,281	11,276	11,304	11,281
Mittelwert 1)	11,268	11,265	11,277	11,268

¹⁾ Mengengewichteter Mittelwert von Januar 2018 - Dezember 2018

Für die Ermittlung der abzurechnenden thermischen Energie E wird bei Gaszählern, die das Volumen im Betriebszustand V_b messen (ohne Mengenumwerter), zunächst das Volumen im Normzustand V_n mit Hilfe der Zustandszahl z berechnet: $V_n = \mathbf{z} \cdot \mathbf{V}_b$

Die Zustandszahl z ist abhängig von der mittleren Temperatur des Gases (Abrechnungstemperatur T_{eff}), vom mittleren Luftdruck p_{amb} , welcher anhand der geodätischen Höhen von Entnahmestellen innerhalb einer Höhenzone festgelegt wird, und vom Gasdruck, unter welchem die Messung erfolgt (Effektivdruck p_{eff}). Bei Gasdrücken ≥ 1 bar muss darüber hinaus die Kompressibilität K des Gases berücksichtigt werden, wobei in diesen Fällen die Gaszähler i. d. R. mit einem elektronischen Mengenumwerter ausgerüstet werden. Zustandszahl $z = (T_n / T_{eff}) \cdot ((p_{am}b + p_{eff}) / p_n) \cdot 1/K$

Bei der überwiegenden Anzahl der Gas-Entnahmestellen erfolgt die Gaszählung mit einem Effektivdruck p_{eff} von 22mbar und einer mittleren Temperatur T_{eff} von 15 °C. Die Zustandszahl z unterscheidet sich bei diesen Entnahmestellen von der jeweiligen geodätischen Höhe, welche sich anhand von Höhenzonen im Versorgungsgebiet unterteilen lässt:

Zustandszahlen z bei p_{eff} = 22 mbar und T_{eff} = 15 °C:

83022 Rosenheim	0,9196	83098 Brannenburg	0,9178
83024 Rosenheim	0,9196	83126 Flintsbach	0,9178
83026 Rosenheim	0,9196	83059 Kolbermoor	0,9187
		83080 Oberaudorf	0,9159
		83064 Raubling	0,9196
		83101 Rohrdorf	0,9196
		83135 Schechen	0,9215
		83071 Stephanskirchen	0,9178

Die Ermittlung der abzurechnenden thermischen Energie E erfolgt aus dem Volumen im Normzustand V_n und dem Abrechnungsbrennwert $H_{s.eff}$ nach der Formel: $E = V_n \times H_{s.eff}$

Stand: 10.01.2019 Seite 1 von 1